Jascha Sohl-Dickstein
Jascha Sohl-Dickstein
Google Brain
Підтверджена електронна адреса в google.com - Домашня сторінка
Назва
Посилання
Посилання
Рік
Density estimation using Real NVP
L Dinh, J Sohl-Dickstein, S Bengio
International Conference on Learning Representations, 2017
13472017
Unrolled generative adversarial networks
L Metz, B Poole, D Pfau, J Sohl-Dickstein
International Conference on Learning Representations, 2017
7672017
Deep knowledge tracing
C Piech, J Spencer, J Huang, S Ganguli, M Sahami, L Guibas, ...
Neural Information Processing Systems, 2015
5512015
Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars
JP Grotzinger, RE Arvidson, JF Bell Iii, W Calvin, BC Clark, DA Fike, ...
Earth and Planetary Science Letters 240 (1), 11-72, 2005
5252005
On the expressive power of deep neural networks
M Raghu, B Poole, J Kleinberg, S Ganguli, J Sohl-Dickstein
International Conference on Machine Learning, 2017
4782017
Deep neural networks as gaussian processes
J Lee, Y Bahri, R Novak, SS Schoenholz, J Pennington, J Sohl-Dickstein
International Conference on Learning Representations, 2017
4742017
Wide neural networks of any depth evolve as linear models under gradient descent
J Lee, L Xiao, SS Schoenholz, Y Bahri, R Novak, J Sohl-Dickstein, ...
Neural Information Processing Systems, 2019
3692019
Exponential expressivity in deep neural networks through transient chaos
B Poole, S Lahiri, M Raghu, J Sohl-Dickstein, S Ganguli
Advances In Neural Information Processing Systems, 3360-3368, 2016
3542016
Mars exploration rover Athena panoramic camera (Pancam) investigation
JF Bell III, SW Squyres, KE Herkenhoff, JN Maki, HM Arneson, D Brown, ...
Journal of Geophysical Research: Planets 108 (E12), 2003
3242003
Svcca: Singular vector canonical correlation analysis for deep learning dynamics and interpretability
M Raghu, J Gilmer, J Yosinski, J Sohl-Dickstein
Neural Information Processing Systems, 2017
2972017
Sensitivity and generalization in neural networks: an empirical study
R Novak, Y Bahri, DA Abolafia, J Pennington, J Sohl-Dickstein
International Conference on Learning Representations, 2018
2382018
Deep information propagation
SS Schoenholz, J Gilmer, S Ganguli, J Sohl-Dickstein
International Conference on Learning Representations, 2017
2132017
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models
G Tucker, A Mnih, CJ Maddison, J Lawson, J Sohl-Dickstein
Advances in Neural Information Processing Systems, oral track, 2627-2636, 2017
2072017
Measuring the effects of data parallelism on neural network training
CJ Shallue, J Lee, J Antognini, J Sohl-Dickstein, R Frostig, GE Dahl
Journal of Machine Learning Research, 2019
1712019
New method for parameter estimation in probabilistic models: minimum probability flow
J Sohl-Dickstein, PB Battaglino, MR DeWeese
Physical review letters 107 (22), 220601, 2011
170*2011
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
L Xiao, Y Bahri, J Sohl-Dickstein, SS Schoenholz, J Pennington
International Conference on Machine Learning, 2018
1692018
Pancam multispectral imaging results from the Spirit rover at Gusev Crater
JF Bell, SW Squyres, RE Arvidson, HM Arneson, D Bass, D Blaney, ...
Science 305 (5685), 800-806, 2004
1672004
Deep unsupervised learning using nonequilibrium thermodynamics
J Sohl-Dickstein, EA Weiss, N Maheswaranathan, S Ganguli
Proceedings of The 32nd International Conference on Machine Learning, 2015
1622015
Capacity and trainability in recurrent neural networks
J Collins, J Sohl-Dickstein, D Sussillo
International Conference on Learning Representations, 2017
1602017
Athena microscopic imager investigation
KE Herkenhoff, SW Squyres, JF Bell, JN Maki, HM Arneson, P Bertelsen, ...
Journal of Geophysical Research: Planets 108 (E12), 2003
1602003
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20