Differential-geometric integrability fundamentals of nonlinear dynamical systems on functional menifolds.(The OY Hentosh, MM Prytula, AK Prykarpatsky Lviv: Lviv Univ. Publ, 2006 | 31 | 2006 |
Differential-geometric and Lie-algebraic foundations of investigating nonlinear dynamical systems on functional manifolds O Hentosh, M Prytula, A Prykarpatsky The Second edition. Lviv University Publ, 2006 | 29 | 2006 |
The gradient-holonomic integrability analysis of a Whitham-type nonlinear dynamical model for a relaxing medium with spatial memory AK Prykarpatsky, MM Prytula Nonlinearity 19 (9), 2115, 2006 | 28 | 2006 |
Algebraic structure of the gradient‐holonomic algorithm for Lax integrable nonlinear dynamical systems. I AK Prykarpatsky, VH Samoilenko, RI Andrushkiw, YO Mitropolsky, ... Journal of Mathematical Physics 35 (4), 1763-1777, 1994 | 25 | 1994 |
Rank of projection-algebraic representations of some differential operators O Bihun, M Prytula arXiv preprint arXiv:1011.3782, 2010 | 22 | 2010 |
The Lie-algebraic discrete approximations in computing analysis AK Prykarpatsky, MM Prytula, OO Yerchenko Volyn Mathematical Bulletin 3, 113-116, 1996 | 16 | 1996 |
Generalization of scheme of the Lie-algebraic method of discrete approximations for Cauchy problem AA Kindybaliuk, MM Prytula XIX Ukrainian Conference of Contemporary Problems of Applied Mathematics and …, 2013 | 6 | 2013 |
The method of Lie-algebraic approximations in the theory of dynamical systems O Bihun, M Prytula Mathematical Bulletin of Shevchenko Scientific Society 1, 24-31, 2004 | 6 | 2004 |
Application of finite elements method for solving variational prolems of channel flows Y Kokovska, M Prytula, P Venherskyi Journal of numerical and applied mathematics 3 (126), 75-85, 2017 | 5 | 2017 |
Application of the generalized method of Lie-algebraic discrete approximations to the solution of the Cauchy problem with the advection equation AA Kindybaliuk, MM Prytula Journal of Mathematical Sciences 204, 280-297, 2015 | 5 | 2015 |
The functional-operator analysis of the problem of convergence for the method of discrete approximations by F. Calogero in Banach spaces M Lustyk, A Prykarpats’kyi, M Prytula, M Vovk Mat. Visnyk NTSh 9, 168-179, 2012 | 5 | 2012 |
The gradient-holonomic analysis of the integrability of a nonlinear Whitham-type model for a relaxing medium with memory AK Prykarpatsky, MM Prytula Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 13-18, 2006 | 5 | 2006 |
The complete integrability analysis of the inverse Korteweg-de Vries equation (inv KdV) M Prytula, V Samoylenko, U Suyarov Nonlin. Vibration Probl.(Warsaw) 25, 411-422, 1993 | 5 | 1993 |
Elements of the Theory of Differential-Geometric Structures and Dynamical Systems MM Prytula, AK Prykarpats UMK VO, Kiev, 1988 | 5 | 1988 |
Quasi-linearization and stability analysis of some self-dual, dark equations and a new dynamical system D Blackmore, MM Prytula, AK Prykarpatski Communications in Theoretical Physics 74 (10), 105007, 2022 | 4 | 2022 |
Modification of the lie‐algebraic scheme and approximation error estimations O Bihun, M Prytula PAMM: Proceedings in Applied Mathematics and Mechanics 4 (1), 534-535, 2004 | 4 | 2004 |
Fundamentals of the Theory of Differential-Geometric Structures and Dynamical Systems, Kiev, the Ministry of Educ M Prytula, A Prykarpatsky, I Mykytiuk Publ, 1988 | 4 | 1988 |
On the complete integrability and linearization of a Burgers–Korteweg–de Vries-type nonlinear equation MM Prytula, AK Prykarpats’ kyi, MI Vovk Journal of Mathematical Sciences 167, 112-117, 2010 | 3 | 2010 |
Direct method of Lie-algebraic discrete approximations for advection equation AA Kindybaliuk, MM Prytula Вісник Львівського університету. Серія: Прикладна математика та інформатика …, 2018 | 2 | 2018 |
Combined algorithm for finding conservation laws and implectic operators for the Boussinesq-Burgers nonlinear dynamical system and its finite dimensional reductions A Kindybaliuk, M Prytula Journal of Applied Mathematics and Computational Mechanics 13 (3), 85-99, 2014 | 2 | 2014 |