Niru Maheswaranathan
Niru Maheswaranathan
Google Brain
Підтверджена електронна адреса в google.com - Домашня сторінка
Назва
Посилання
Посилання
Рік
Deep learning models of the retinal response to natural scenes
L McIntosh, N Maheswaranathan, A Nayebi, S Ganguli, S Baccus
Advances in neural information processing systems 29, 1369-1377, 2016
1722016
Deep unsupervised learning using nonequilibrium thermodynamics
J Sohl-Dickstein, E Weiss, N Maheswaranathan, S Ganguli
International Conference on Machine Learning, 2256-2265, 2015
1702015
A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex
K Hardcastle, N Maheswaranathan, S Ganguli, LM Giocomo
Neuron 94 (2), 375-387. e7, 2017
1492017
Learned optimizers that scale and generalize
O Wichrowska, N Maheswaranathan, MW Hoffman, SG Colmenarejo, ...
International Conference on Machine Learning, 3751-3760, 2017
1422017
Social control of hypothalamus-mediated male aggression
T Yang, CF Yang, MD Chizari, N Maheswaranathan, KJ Burke Jr, ...
Neuron 95 (4), 955-970. e4, 2017
832017
Meta-learning update rules for unsupervised representation learning
L Metz, N Maheswaranathan, B Cheung, J Sohl-Dickstein
arXiv preprint arXiv:1804.00222, 2018
622018
Guided evolutionary strategies: Augmenting random search with surrogate gradients
N Maheswaranathan, L Metz, G Tucker, D Choi, J Sohl-Dickstein
International Conference on Machine Learning, 4264-4273, 2019
53*2019
Inferring hidden structure in multilayered neural circuits
N Maheswaranathan, DB Kastner, SA Baccus, S Ganguli
PLoS computational biology 14 (8), e1006291, 2018
502018
Universality and individuality in neural dynamics across large populations of recurrent networks
N Maheswaranathan, AH Williams, MD Golub, S Ganguli, D Sussillo
Advances in neural information processing systems 2019, 15629, 2019
492019
Understanding and correcting pathologies in the training of learned optimizers
L Metz, N Maheswaranathan, J Nixon, D Freeman, J Sohl-Dickstein
International Conference on Machine Learning, 4556-4565, 2019
372019
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
N Maheswaranathan, AH Williams, MD Golub, S Ganguli, D Sussillo
Advances in neural information processing systems 32, 15696, 2019
322019
The dynamic neural code of the retina for natural scenes
N Maheswaranathan, LT McIntosh, H Tanaka, S Grant, DB Kastner, ...
BioRxiv, 340943, 2019
322019
Learning unsupervised learning rules
L Metz, N Maheswaranathan, B Cheung, J Sohl-Dickstein
arXiv preprint arXiv:1804.00222, 8, 2018
302018
Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping
AH Williams, B Poole, N Maheswaranathan, AK Dhawale, T Fisher, ...
Neuron 105 (2), 246-259. e8, 2020
292020
From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction
H Tanaka, A Nayebi, N Maheswaranathan, L McIntosh, SA Baccus, ...
arXiv preprint arXiv:1912.06207, 2019
252019
Recurrent segmentation for variable computational budgets
L McIntosh, N Maheswaranathan, D Sussillo, J Shlens
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
182018
Emergent bursting and synchrony in computer simulations of neuronal cultures
N Maheswaranathan, S Ferrari, AMJ VanDongen, C Henriquez
Frontiers in computational neuroscience 6, 15, 2012
182012
Using learned optimizers to make models robust to input noise
L Metz, N Maheswaranathan, J Shlens, J Sohl-Dickstein, ED Cubuk
arXiv preprint arXiv:1906.03367, 2019
122019
How recurrent networks implement contextual processing in sentiment analysis
N Maheswaranathan, D Sussillo
arXiv preprint arXiv:2004.08013, 2020
112020
Using a thousand optimization tasks to learn hyperparameter search strategies
L Metz, N Maheswaranathan, R Sun, CD Freeman, B Poole, ...
arXiv preprint arXiv:2002.11887, 2020
92020
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20