Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure A Logunov Annals of Mathematics 187 (1), 221-239, 2018 | 161 | 2018 |
Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower bound in Yau's conjecture A Logunov Annals of Mathematics 187 (1), 241-262, 2018 | 155 | 2018 |
Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimensions two and three A Logunov, E Malinnikova 50 Years with Hardy Spaces: A Tribute to Victor Havin, 333-344, 2018 | 74 | 2018 |
Quantitative propagation of smallness for solutions of elliptic equations A Logunov, E Malinnikova Proceedings of the International Congress of Mathematicians (ICM 2018) (In 4 …, 2018 | 59 | 2018 |
The Landis conjecture on exponential decay A Logunov, E Malinnikova, N Nadirashvili, F Nazarov arXiv preprint arXiv:2007.07034, 2020 | 50 | 2020 |
Review of Yau's conjecture on zero sets of Laplace eigenfunctions A Logunov, E Malinnikova arXiv preprint arXiv:1908.01639, 2019 | 32 | 2019 |
Lecture notes on quantitative unique continuation for solutions of second order elliptic equations A Logunov, E Malinnikova arXiv preprint arXiv:1903.10619, 2019 | 28 | 2019 |
Weak integral conditions for BMO A Logunov, L Slavin, D Stolyarov, V Vasyunin, P Zatitskiy Proceedings of the American Mathematical Society 143 (7), 2913-2926, 2015 | 27 | 2015 |
On ratios of harmonic functions A Logunov, E Malinnikova Advances in Mathematics 274, 241-262, 2015 | 25 | 2015 |
The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions A Logunov, E Malinnikova, N Nadirashvili, F Nazarov Geometric and Functional Analysis 31 (5), 1219-1244, 2021 | 23 | 2021 |
Ratios of harmonic functions with the same zero set A Logunov, E Malinnikova Geometric and Functional Analysis 26, 909-925, 2016 | 23 | 2016 |
Eigenfunctions with infinitely many isolated critical points L Buhovsky, A Logunov, M Sodin International Mathematics Research Notices 2020 (24), 10100-10113, 2020 | 17 | 2020 |
A discrete harmonic function bounded on a large portion of is constant L Buhovsky, A Logunov, E Malinnikova, M Sodin Duke mathematical journal 171 (6), 1349-1378, 2022 | 14 | 2022 |
A discrete harmonic function bounded on a large portion of is constant L Buhovsky, A Logunov, E Malinnikova, M Sodin arXiv preprint arXiv:1712.07902, 2017 | 11 | 2017 |
Translation-invariant probability measures on entire functions L Buhovsky, A Glücksam, A Logunov, M Sodin Journal d'Analyse Mathematique 139 (1), 307-339, 2019 | 10 | 2019 |
Poisson brackets of partitions of unity on surfaces L Buhovsky, A Logunov, S Tanny Commentarii Mathematici Helvetici 95 (2), 247-278, 2020 | 8 | 2020 |
Local version of Courant’s nodal domain theorem S Chanillo, A Logunov, E Malinnikova, D Mangoubi Journal of Differential Geometry 126 (1), 49-63, 2024 | 7 | 2024 |
On the boundary behavior of positive solutions of elliptic differential equations A Logunov St. Petersburg Mathematical Journal 27 (1), 87-102, 2016 | 3 | 2016 |
On the higher dimensional harmonic analog of the Levinson log log theorem A Logunov Comptes Rendus Mathematique 352 (11), 889-893, 2014 | 3 | 2014 |
An elliptic adaptation of ideas of Carleman and Domar from complex analysis related to Levinson’s loglog theorem A Logunov, H Papazov Journal of Mathematical Physics 62 (6), 2021 | 2 | 2021 |