Nandor Simanyi
Nandor Simanyi
Professor of Mathematics, University of Alabama at Birmingham
Підтверджена електронна адреса в uab.edu - Домашня сторінка
Назва
Посилання
Посилання
Рік
A “transversal” fundamental theorem for semi-dispersing billiards
A Krámli, N Simányi, D Szász
Communications in mathematical physics 129 (3), 535-560, 1990
1211990
Dual polygonal billiards and necklace dynamics
E Gutkin, N Simányi
Communications in mathematical physics 143 (3), 431-449, 1992
871992
The K-property of three billiard balls
A Krámli, N Simanyi, D Szasz
Annals of Mathematics, 37-72, 1991
671991
Hard ball systems are completely hyperbolic
N Simányi, D Szász
Annals of Mathematics, 35-96, 1999
581999
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
N Simányi
Inventiones Mathematicae 154 (1), 123-178, 2003
562003
The K-property of four billiard balls
A Krámli, N Simanyi, D Szasz
Communications in mathematical physics 144 (1), 107-148, 1992
551992
The K-property ofN billiard balls I
N Simányi
Inventiones mathematicae 108 (1), 521-548, 1992
541992
Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus
A Krámli, N Simányi, D Szász
Nonlinearity 2 (2), 311, 1989
521989
Proof of the ergodic hypothesis for typical hard ball systems
N Simányi
Annales Henri Poincaré 5 (2), 203-233, 2004
422004
Ergodicity of hard spheres in a box
N Simányi
arXiv preprint math/9703213, 1997
341997
The complete hyperbolicity of cylindric billiards
N Simanyi
arXiv preprint math/9906139, 1999
331999
Conditional proof of the Boltzmann-Sinai ergodic hypothesis
N Simányi
Inventiones mathematicae 177 (2), 381-413, 2009
302009
Dispersing billiards without focal points on surfaces are ergodic
A Krámli, N Simányi, D Szász
Communications in mathematical physics 125 (3), 439-457, 1989
281989
The K-property ofN billiard balls II. Computation of neutral linear spaces
N Simanyi
Inventiones mathematicae 110 (1), 151-172, 1992
251992
Non-integrability of cylindric billiards and transitive Lie group actions
N SIMÁNYI, D SZÁSZ
Ergodic theory and dynamical systems 20 (2), 593-610, 2000
242000
The K-property of 4D billiards with nonorthogonal cylindric scatterers
N Simányi, D Szasz
Journal of statistical physics 76 (1-2), 587-604, 1994
221994
On the complexity of curve fitting algorithms
N Chernov, C Lesort, N Simányi
Journal of complexity 20 (4), 484-492, 2004
212004
The K-property of Hamiltonian systems with restricted hard ball interactions
N Simányi, D Szász
Mathematical Research Letters 2 (6), 751-770, 1995
201995
Towards a proof of recurrence for the Lorentz process
N Simanyi
Banach Center Publications 1 (23), 265-276, 1989
171989
Rotation sets of billiards with one obstacle
A Blokh, M Misiurewicz, N Simányi
Communications in mathematical physics 266 (1), 239-265, 2006
152006
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20