Ergodic Theory: with a view towards Number Theory M Einsiedler, T Ward Springer Verlag, 2010 | 494* | 2010 |

Recurrence sequences G Everest, A van der Poorten, I Shparlinski, T Ward American Mathematical Society, Providence, RI, 2003 | 413 | 2003 |

Heights of polynomials and entropy in algebraic dynamics G Everest, T Ward Springer Science & Business Media, 2013 | 242 | 2013 |

Mahler measure and entropy for commuting automorphisms of compact groups D Lind, K Schmidt, T Ward Inventiones mathematicæ 101 (1), 593-629, 1990 | 218 | 1990 |

Automorphisms of solenoids and p-adic entropy DA Lind, T Ward Ergodic Theory and Dynamical Systems 8 (3), 411-419, 1988 | 115 | 1988 |

An introduction to number theory G Everest, T Ward Springer Verlag, 2005 | 104 | 2005 |

S-integer dynamical systems: periodic points V Chothi, G Everest, T Ward Journal Fur Die Reine Und Angewandte Mathematik, 99-132, 1997 | 73 | 1997 |

Primes in elliptic divisibility sequences M Einsiedler, G Everest, T Ward LMS Journal of Computation and Mathematics 4, 1-13, 2001 | 68 | 2001 |

Mixing automorphisms of compact groups and a theorem of Schlickewei K Schmidt, T Ward Inventiones mathematicae 111 (1), 69-76, 1993 | 62 | 1993 |

Primitive divisors of elliptic divisibility sequences G Everest, G Mclaren, T Ward Journal of Number Theory 118 (1), 71-89, 2006 | 59 | 2006 |

The Abramov-Rokhlin entropy addition formula for amenable group actions. T Ward, Q Zhang Monatshefte für Mathematik. 114 (3-4), 317-329, 1992 | 58 | 1992 |

Arithmetic and growth of periodic orbits Y Puri, T Ward J. Integer Seq 4 (2), 2001 | 57 | 2001 |

Expansive subdynamics for algebraic\mathbb {Z}^ d-actions M Einsiedler, D Lind, R Miles, T Ward Ergodic theory and dynamical systems 21 (6), 1695-1729, 2001 | 52 | 2001 |

Automorphisms ofZd-subshifts of finite type T Ward Indagationes Mathematicae 5 (4), 495-504, 1994 | 31 | 1994 |

Primes generated by recurrence sequences G Everest, S Stevens, D Tamsett, T Ward American Mathematical Monthly 114 (5), 417-431, 2007 | 30 | 2007 |

Almost all -integer dynamical systems have many periodic points TB Ward Ergodic Theory and Dynamical Systems 18 (2), 471-486, 1998 | 30 | 1998 |

Orbit-counting in non-hyperbolic dynamical systems G Everest, R Miles, S Stevens, T Ward Journal für die reine und angewandte Mathematik 608, 155-182, 2007 | 29 | 2007 |

A dynamical property unique to the Lucas sequence Y Puri, T Ward arXiv preprint math/9907015, 1999 | 24 | 1999 |

Functional analysis, spectral theory, and applications M Einsiedler, T Ward | 22 | 2017 |

Orbit counting with an isometric direction G Everest, V Stangoe, T Ward arXiv preprint math/0407166, 2004 | 22 | 2004 |